| a-train | abs lookup | absorption | aerosols | aggregation | airs | albedo | algorithm | amsu | annual cycle | anomalies | aqua | ar4 | ar5 | arctic | arm | arts | arts-dev | asr | assimilation | astrophysics | atmosphere | atmospheric composition | atmospheric dynamics | atmospheric profiles | atsr-2 | avhrr | backscattering | basics | bayes | book | calculation | calculations | calibration | calipso | ccn | cdr | ceres | cfmip | chemistry | cia | ciraclim | cirrus | cirrus anvil sublimation | cirrus cloud | cirrus clouds | cirrusstudy | ciwsir/cloudice | claus | climate | climate change | climate dynamics | climate feedbacks | climate sensitivity | climate sensivity | climate variability | climatology | cloud feedback | cloud forcing | cloud fraction | cloud ice | cloud properties | cloud radiative effects | cloud radiative forcing | cloud regimes | clouds | cloudsat | cmip3 | cmip5 | cmip6 | cmsaf | co2 | collocation | comparison | computer science | continua | contrail | convection | convective clouds | convective processes | convective self-aggregation | correlated k | cosmic background | cosmic rays | cosp | cross-calibration | cth | cumulus | dardar | data bases | dda | deep convection | delta m | dimer | disort | diurnal cycle | dmsp | documentation | droplet size | dynamics | earth | earthcare | echam | ecmwf | effective radius | electromagnetism | electron content | elevation | elevation satellite-2 | emd | emissivity | enso | eof-pca-svd | erbe | error assessment | ers | eruption | esa planetary | exoplanets | extraterrestrial | fall speed | far-infrared | faraday-voigt | fcdr | feedback | feedbacks | fingerprinting | flux uav | forcing | forest fire | fox19_airborne_amt.pdf | friend | fun | gcm | genesis | geostationary | gerrit_erca | global warming | gnss | goes | gps | gras | graupel | greenhouse effect | groundbased | hadley circulation | hail | heating rate | heating rates | herschel | hiatus | hirs | history | hsb | humidity | hydrological sensitivity | hydrological sensivity | iasi | ice | ice clouds | ice crystal growth | ice nucleation | ice water | icesat-2 | ici | icon | icz | in situ | infrared | instruments | intercalibration | intercomparison | interference | inverse modelling | ipcc | ir/vis | iris | isccp | ismar | isotopes | itcz | iwc | iwp | iwv | jupiter | kessler scheme | lblrtm | lidar | limb effect | limb sounding | limb-correction | linemixing | lineshape | liquid water | liquid water path | longwave radiation | low-cloud feedback | magnetic field | magnetism | mars | mas | mass-dimension relation | masters thesis | math | megha-tropiques | mendrok | mesoscale organization | meteorology | meteosat | metop | mhs | microphysics | microwave | mipas | mirs | misr | mixed phase | mls | model | modeling | models | modis | monte carlo | mspps | msu | mth | multi-moment scheme | multisensor | mwhs | mwi | net radiation | neural network | nicam | nlte | noaa | nonsphericity | npoess | observation | ocean | ocean reflection | ocean-atmosphere interactions | odin | olr | one-moment scheme | open loop | optical | optical depth | optical properties | optics | orbital drift | orbits | ozone | pacific ocean | particle orientation | particle shape | particle size | particle size distribution | patmos-x | phase function | phd thesis | polarimetry | polarization | polder | potss | precipitation | profile datasets | programming | projection | promet | propagation modeling | python | radar | radiation | radiation profiles | radiative convective equilibrium | radiative equilibrium | radiative feedback | radiative fluxes | radiative forcing | radiative processes | radiative transfer | radiative-convective equilibrium | radiative-equilibrium | radio occultation | radiometers | radiosonde | radiosonde cloud liquid | radiosonde correction | rain | reanalysis | refractive index | relative humidity | remote sensing | retrieval | review | rodgers | rttov | sahara | sahel | sampling | sand/dust | sar | satellite | satellite missions | satellite observations | satellite simulator | sbuehler_habil | scattering | scattering databases | scintillations | scout-amma | self-aggregation | sensor geometry | seviri | shallow convection | simulated annealing | single scattering | smiles | sno | snow | snowfall | software | soil | solar | soot | sounders | spectral information | spectroscopy | split window technique | ssm/i | ssm/t | ssmis | ssmt2 | stability | statistics | ste | stereo | stratosphere | submillimeter | submm | sun | supersaturation | surface | synergies | task2 | tempera | temperature | terra | thermodynamics | time series | titan | toa radiation | top of the atmosphere | total column | tovs | trade-wind clouds | trajectory analysis | trend | trmm | tropical circulation | tropical convection | tropical meteorology | tropics | tropopause | troposphere | ttl | turbulence | tutorial | two-moment scheme | upper troposphere | uth | utls | validation | vater vapor | venus | visualization | volcanic ash | walker circulation | walker rirculation | water | water cycle | water dimer | water vapor | water vapor continuum | water vapour | water vapour path | water-vapour | wind | zeeman |

Hide tag cloud

Filter by author:
Filter by year:
Filter by bibtex key:
Filter by type:
Filter by keyword:
and
and
 

Filtered by keyword:limb sounding

There is currently a filter applied. To see the complete list of publications, clear the filter.
  1. Aellig, C. P., N. Kämpfer, and R. M. Bevilacqua (1993), Error Analysis of Cl0, O3, and H2O Abundance Profiles Retrieved From Millimeter Wave Limb Sounding MeasurementsJ. Geophys. Res., 98(D2), 2975–2983.
  2. Bond, S. T. (1996), The Potential Effect of Cirrus on Microwave Limb Sounder Retrievals, The University of Edinburgh.
  3. Carlotti, M. and B. Carli (1994), Approach to the design and data analysis of a limb-scanning experimentAppl. Opt., 33(15), 3237–3249.
  4. von Clarmann, T., M. Höpfner, S. Kellmann, A. Linden, S. Chauhan, B. Funke, U. Grabowski, N. Glatthor, M. Kiefer, T. Schieferdecker, G. P. Stiller, and S. Versick (2009), Retrieval of temperature, H2O, O3, HNO3, CH4, N2O, ClONO2 and ClO from MIPAS reduced resolution nominal mode limb emission measurementsAtmos. Meas. Tech., 2, 159–175, doi:10.5194/amt-2-159-2009.
  5. Dudhia, A., P. E. Morris, and R. J. Wells (2002), Fast monochromatic radiative transfer calculations for limb soundingJ. Quant. Spectrosc. Radiat. Transfer, 74(6), 745–756, doi:10.1016/S0022-4073(01)00285-0.
  6. Ekström, M. and P. Eriksson (2008), Altitude resolved ice-fraction in the uppermost tropical troposphereGeophys. Res. Lett., 35, L13822, doi:10.1029/2008GL034305.
  7. Funke, B., G. P. Stiller, T. von Clarmann, G. Echle, and H. Fischer (1998), CO2 Line Mixing in MIPAS Limb Emission Spectra and its Influence on Retrieval of Atmospheric ParametersJ. Quant. Spectrosc. Radiat. Transfer, 59(3–5), 215–230.
  8. Hawkins, G. J. and R. Hunneman (2000), A spectral performance model for the High Resolution Dynamics Limb Sounder (6–18μm)Infrared Phys. & Tech., 41, 239–246.
  9. Jiménez, C., P. Eriksson, and J. Askne (2000), Non-linear inversion of Odin sub-mm observations in the lower stratosphere by neutral networksMicrow. Radiomet. Remote Sens. Earth's Surf. Atmosphere, 503–511.
  10. Jiménez, C., P. Eriksson, and D. Murtagh (2003), Inversion of Odin limb sounding submillimeter observations by a neural network techniqueRadio Sci., 38(4), 8062, doi:10.1029/2002RS002644.
  11. Kikuchi, K., T. Nishibori, S. Ochiai, H. Ozeki, Y. Irimajiri, Y. Kasai, M. Koike, T. Manabe, K. Mizukoshi, Y. Murayama, T. Nagahama, T. Sano, R. Sato, M. Seta, C. Takahashi, M. Takayanagi, H. Masuko, J. Inatani, M. Suzuki, and M. Shiotani (2010), Overview and early results of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)J. Geophys. Res., 115, D23306, doi:10.1029/2010JD014379.
  12. Kostsov, V. S., Y. M. Timofeyev, and H. Grassl (1995), On the Accuracy of the Limb Sounding of the Atmosphere in the 10.4 μm, 15 μ m CO2 and 9.6 μm O3 Bands with Account for Non-LTEAdv. Space. Res., 16(10), (10)87–(10)90.
  13. Livesey, N. J. and W. G. Read (2000), Direct Retrieval of Line-of-Sight Atmospheric Structure from Limb Sounding ObservationsGeophys. Res. Lett., 27(6), 891–894.
  14. Murk, A., N. Kämpfer, R. Wylde, J. Inatani, T. Manabe, and M. Seta (2001), Characterization of Various Quasi-Optical Components for the Submillimeter Limb-Sounder SMILES, University of Bern, Thomas Keating Ltd., National Space Development Agency, Communications Research Laboratory.
  15. Murtagh, D., U. Frisk, F. Merino, M. Ridal, A. Jonsson, J. Stegman, G. Witt, P. Eriksson, C. Jiménez, G. Megie, J. de la Noë, P. Ricaud, P. Baron, J. R. Pardo, A. Hauchcorne, E. J. Llewellyn, D. A. Degenstein, R. L. Gattinger, N. D. Lloyd, W. F. J. Evans, I. C. McDade, C. S. Haley, C. Sioris, C. von Savigny, B. H. Solheim, J. C. McConnell, K. Strong, E. H. Richardson, G. W. Leppelmeier, E. Kyrölä, H. Auvinen, and L. Oikarinen (2002), An overview of the Odin atmospheric missionCan. J. Phys., 80(4), 309–319, doi:10.1139/P01-157.
  16. Rozanov, A., K. Weigel, H. Bovensmann, S. Dhomse K.-U. Eichmann, R. Kivi, V. Rozanov, H. Voemel, M. Weber, and J. P. Burrows (2011), Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurementsAtmos. Meas. Tech., 4, 933–954, doi:10.5194/amt-4-933-2011.
  17. Sihvola, L. Oikarinen E. and E. Kyroelae (1999), Multiple scattering radiance in limb-viewing geometryJ. Geophys. Res., 104(D24), 31,261–31,274.
  18. Spichtinger, P., K. Gierens, and W. Read (2002), The global distribution of ice-supersaturated regions as seen by the microwave limb sounderQ. J. R. Meteorol. Soc., 128, 1–999.
  19. Thies, B. and J. Bendix (2011), Satellite based remote sensing of weather and climate: recent achievements and future perspectivesMet. Appl., 18, 262–295, doi:10.1002/met.288.
  20. Waters, J. W. (1992), Submillimeter-Wavelength Heterodyne Spectroscopy and Remote Sensing of the Upper AtmosphereProceedings of the IEEE, 80(11), 1679–1701.
  21. Wu, D. L., A. Lambert, W. G. Read, P. Eriksson, and J. Gong (2014), MLS and CALIOP Cloud Ice Measurements in the Upper Troposphere: A Constraint from Microwave on Cloud MicrophysicsJ. Appl. Meteorol. Clim., 53(1), 157–165, doi:10.1175/JAMC-D-13-041.1.